
Throughput Analysis of Jellyfish Network Variations

Cristina McLaughlin

Department of Electrical Engineering

University of Hawaii at Manoa

Honolulu, United States

cemclaug@hawaii.edu

Abstract—Recent challenges facing modern data centers

indicates a need for new network designs. The architectures must

be flexible, incrementally scalable, fault tolerant, and capable of

supporting high bandwidth applications. Jellyfish is a new high-

capacity network that fulfills these design goals. Variations on the

topology—random, incremental, and bipartite—were tested with

different traffic loads using equal-cost multipath routing to

observe the throughputs. Incremental expansion resulted in the

same throughput as a Jellyfish network created from scratch. In

addition, the bipartite Jellyfish outperformed the original Jellyfish

in lower load situations, while underperforming in denser traffic.

This paper describes the methodology of generating the Jellyfish

variations, generating different traffic loads, simulating each

network to find the average throughput, and finally reports and

evaluates the results.

Keywords—network architecture, throughput, ECMP routing

I. INTRODUCTION

 A data center is a pool of computing resources that includes
core design components such as routers, switches, firewalls, and
servers. These centers are the foundation for important business
activities like communication and collaboration, applications
like big data, artificial intelligence, or machine learning, and
infrastructure services like distributed files systems. Modern
centers are also being built to provide popular online application
services like web searching, gaming, and social media sites.

 Conventional data centers are modeled as a multi-layer
hierarchical network with servers as network nodes. For
example, current data center topologies include fat-trees and
folded-Clos. A fat-tree is a three-layer graph (edge, aggregation,
and core) that has identical bandwidth at any bisection and each
layer has the same aggregated bandwidth [1]. A folded-Clos
network is a one-sided version of a fat-tree where it is essentially
a bipartite graph. These current topologies are facing the
challenges of rising traffic, bandwidth bottlenecks, and
incremental network expansion, therefore it has become
important to consider different network architectures [2]. For
instance, in 2008 Facebook was running 10,000 servers in its
data centers, by 2009 it was 30,000, and by 2010 it was 60,000
[3]. In 2019, the company also announced it would build four
additional data centers to house more servers and storage [4].

 These challenges have led to several major design goals in
data center networking [5]. First, an idealized network should be
scalable and flexible, allowing for incremental network
expansion by adding servers and network capacity gradually.

Second, the data center must be fault tolerant against server and
link failures. Third, the data center must provide network
capacity to support high-bandwidth services. Lastly, the network
should be manageable both digitally and physically [2]. For
example, developers should be able to manage or configure the
network easily and the architecture should minimize cabling
complexity.

 This paper focuses on a new top-of-rack (ToR) switch
architecture by Ankit Singla et al. [6] called Jellyfish. It is a
degree-bounded random graph topology that handles the rising
challenges of data centers and fulfills the design goals stated
above. The random nature of the network makes it significantly
more flexible and fault tolerant. On average, path lengths are
shorter in Jellyfish compared to other topologies on all scales.
Lastly, Jellyfish improves on the throughput of most
conventional networks; it can support 27% more servers than a
fat-tree topology [6]. Fig. 1 shows a diagram of a traditional fat-
tree topology versus a random Jellyfish network [6].

 The goal is to construct three variations of Jellyfish:
Random Jellyfish (R-Jellyfish), Incremental Jellyfish (I-
Jelly), and Bipartite Jellyfish (B-Jellyfish), then measure the
capabilities and throughput of each topology in different traffic
situations.

 The outline of this report is as follows: Section 2 will further
discuss the Jellyfish topology, it’s variations, and how to
construct the graphs, Section 3 will describe the throughput
performance, Section 4 will be a comparison of results, and
Section 5 will conclude the paper.

 Fat-Tree Jellyfish

 (tree-like topology) (random graph)

Fig. 1. Traditional fat-tree network versus a random graph Jellyfish
network. Random graphs have high throughput due to low average path

length, resulting in less work to deliver packets.

II. JELLYFISH TOPOLOGIES

This section further discusses the Jellyfish topology and

ways to construct its variations. The Jellyfish network dictates

the interconnection of ToR switches, which will be referred to

as nodes, and the connections between switches as links. The

degree of a node is the number of links connected to the node.

The original Jellyfish approach results in a random regular

graph which has several desirable properties for data center

architecture. Typically, random graphs have high throughput

due to the low average path length. This results in less work

delivering each packet. The random nature also allows for

incremental expansion with just a few link swaps. Expansion

through this method also produces a network that is identical in

throughput and path length to one generated from scratch [7].

These properties will be tested using the graph variations

below.

A. Random Jellyfish Topology (R-Jellyfish)

 The original Jellyfish approach is to construct a random
graph to connect ToR switches. To generate the topology first
designate the number of nodes N and maximum degree of each
node d. Randomly select two nodes, u and v, from the pool of
nodes. Check if they are connected; if not, connect them with a
link (u,v) and increment the current degree d for u and v. Repeat
this process until it cannot be completed anymore.

 Next, check the finished graph for nodes with degree d-2,
which will be called node x. If x exists, select a random link (u,
v). Remove the link between nodes u and v, then reassign links
(u, x) and (v, x). Now x will have degree d. Repeat this process
until it also cannot be completed anymore.

 The final R-Jellyfish graph should contain N nodes with
degree d, or possibly N-1 nodes with degree d and one node with
degree d-1.

B. Incremental Jellyfish Topology (I-Jellyfish)

 The I-Jellyfish approach is used to test if incremental
expansion will result in a graph with the same throughput as R-
Jellyfish. To generate the graph, start with a pool of d+1 nodes
and link all nodes to each other to create a complete graph G.
Add node x to G. Randomly select a link (u, v) and check that
nodes u and v are not connected to x. Remove the link (u, v)
then reassign links (u, x) and (v, x). Repeat this process until x
has degree d. Continue to add links this way until the G contains
N nodes.

 As was the case with R-Jellyfish, the final graph should
contain N nodes with degree d, or possibly N-1 nodes with
degree d and one node with degree d-1.

C. Bipartite Jellyfish Topology (B-Jellyfish)

The B-Jellyfish approach randomly constructs a bipartite
graph with an even number of nodes on the left and right sides.
This variation is used to test traffic load-balancing against the R-
Jellyfish. To construct the bipartite graph B, start with 2d nodes,
with d nodes on the left side and d nodes on the right. Link all
nodes on the left to all nodes on the right to create a complete
bipartite graph.

Add a new node l to the left side of B and add new node r to
the right side. Connect l and r with a link (l, r). Choose d-1
random links from B that do not share nodes with one another;
the random links are (u1, v1), (u2, v2), …, (ud-1, vd-1). For each
link (uk, vk), delete the link between nodes uk and vk, then add
links (l, vk) and (r, uk). Repeat this process by adding pairs of
nodes to B until there are N nodes.

III. JELLYFISH TESTING AND PERFORMANCE

 To make comparisons between R-Jellyfish, I-Jellyfish, and
B-Jellyfish simulations were conducted to measure the
throughput r of each topology. Throughput is a common
measure of network capacity because it indicates how much data
is transferred at any given time [7]. Three assumptions were
made for the simulations. First, the traffic matrix for each
topology contains entries of 0 or r-value. Second, the traffic on
each graph follows the shortest paths with equal-cost multi-path
(ECMP) routing. ECMP is a mechanism to route packets along
paths of equal cost to achieve an equal and distributed link load
sharing []. The third assumption is that all links have capacity 1.

 Throughput is defined as the maximum value r such that the
traffic load on the links does not exceed the capacity, in this case
1. Find the highest traffic load L among all links. The resulting
throughput equation is (1):

 r = 1/L (1)

 Suppose an R-Jellyfish graph has a maximum link load 4r.
To ensure all the traffic loads on the graph are at most 1 due to
the designated capacity, set 4r ≤ 1. The resulting throughput
becomes r = 0.25.

A. Generating Traffic Matrices

The throughput for each Jellyfish topology was tested under
two different traffic loads: all-to-all and random permutation.
In all-to-all, each node sends r amount of traffic to each of the
other nodes. This results in heavier loads across all connections;

for example, a of graph of 300 nodes results in (300
2
) = 44,580

directions for end-to-end traffic. To construct the all-to-all
traffic matrix, create an N × N matrix where N is the number of
nodes in the network. Fill each matrix entry with flow equal to
1. Both halves of the matrix must be filled in because all-to-all
considers bidirectional traffic between nodes, e.g. node 1 sends
traffic to node 300, but node 300 also sends traffic to node 1,
effectively doubling the original load on all incident links.

Random permutation is traffic generated by randomly
selecting sending and receiving node pairs. The receiving node
is only considered if it does not already have incoming traffic
which results in much lighter loads compared to all-to-all. A
graph of 300 nodes results in 300 directions for end-to-end
traffic—compared to the 44,580 generated by all-to-all—
because each node can only have incoming traffic once. To
construct the random permutation matrix, create an N × N
matrix. Next, randomly select a sending node and a receiving
node, check if the receiving node already has incoming traffic,
and if not, update the matrix entry with 1. Repeat the process
until all nodes in the graph receive traffic once from a source.

B. Simulation Methodology

An ECMP routing program was designed to calculate the
throughput for the Jellyfish topologies. It reads in text files of
a graph topology and traffic matrix, then outputs the traffic
loads on each link. The program also reports the maximum
load among links and uses (1) to calculate the throughput.

The procedure for routing follows. The program reads the
sending node u and receiving node v from the traffic matrix
along with the traffic load—in all cases it is 1. Starting at v,
the preferred neighbor nodes are computed and saved. A
preferred neighbor is a neighboring node that is along a
shortest path from u to v. The traffic load is split evenly
between all preferred neighbors and forwarded. The process
repeats for all preferred neighbors until the program reaches
the original sending node u. Finally, each link used in the
forwarding will have its final flow saved to a traffic load
matrix. The process repeats for all inputs of sending and
receiving nodes, while updating all link usage. The simulation
keeps track of which link has the highest flow, and reports the
throughput using that value.

The ECMP simulation was tested 15 times with each
Jellyfish topology, traffic style, and node-degree combination.
R-Jellyfish, I-Jellyfish, and B-Jellyfish files were generated
where N = 64 d = 8, N = 100 d = 8, N = 200 d = 8, N = 100 d =
12, N = 200 d = 12, and N = 300 d = 12. For example, to
simulate an R-Jellyfish network containing 64 nodes of degree
8 using random permutation traffic, 15 topology files and 15
traffic matrices are generated. The files are inputted into the
ECMP simulation, which outputs 15 throughput values. The
data points are then averaged and presented in the results
section. The testing was limited to 15 times per combination
due to constraints and long execution time on larger node sets.
The ECMP simulation takes upward of one minute to
complete when N = 300 d = 12 with all-to-all traffic; this does
not account for time necessary to generate the files.

C. Throughput Results

The throughput simulation results are shown in Table 1 and
Table 2 below. The data is split between traffic load types: all-
to-all and random permutation. The results show that without
normalization, the average throughput in all-to-all traffic is
significantly lower than random permutation due to the much
heavier link loads. For example, with parameters N = 300 and
d = 12 in the R-Jellyfish network, the average maximum load
was 90 using all-to-all, compared to 3 using random
permutation.

Overall, the distribution of the simulation data was much
tighter than anticipated. High variance was expected due to the
random nature of the topologies. However, all standard
deviations calculated were >1 indicating the spread was low.
The highest variance was σ2 = 0.07, which occurred with
parameters N = 64 d = 8 in the I-Jellyfish network using random
permutation traffic. The maximum load on the network ranged
from 2 to 4 with an average of 2.73. There were also multiple
scenarios with σ2 = 0; this occurred at N = 300 d = 12 in all
graph topologies with random permutation. In every simulation
the maximum load recorded was 3, resulting in an average
throughput of 0.33 shown in Table 2. In addition, there were no
significant outliers in any simulation. All throughputs

calculated remained within one standard deviation of their
respective means.

TABLE I. AVERAGE THROUGHPUT OF JELLYFISH TOPOLOGIES USING

ALL-TO-ALL TRAFFIC LOAD

Nodes

(N)

Average Throughput (r)

R-Jellyfish I-Jellyfish B-Jellyfish
d = 8 d = 12 d = 8 d = 12 d = 8 d = 12

64 0.0420 0.0440 0.0416

100 0.0206 0.0349 0.0216 0.0368 0.0187 0.0319

200 0.0097 0.0167 0.0098 0.0165 0.0086 0.0145

300 0.0100 0.0106 0.0096

TABLE II. AVERAGE THROUGHPUT OF JELLYFISH TOPOLOGIES USING

RANDOM PERMUTATION TRAFFIC LOAD

Nodes

(N)

Average Throughput (r), Random Permutation Traffic

R-Jellyfish I-Jellyfish B-Jellyfish
d = 8 d = 12 d = 8 d = 12 d = 8 d = 12

64 0.3722 0.3833 0.4556

100 0.3167 0.3278 0.3167 0.3389 0.3602 0.4524

200 0.2333 0.3055 0.2488 0.3194 0.2855 0.3333

300 0.3333 0.3330 0.3333

IV. EVALUATION OF RESULTS

This section evaluates the throughput results gathered in

Section 3 and discusses the capabilities of each topology. The

goal of Part A is to evaluate the performance of Jellyfish

created from scratch versus one that has been incrementally

expanded. The original Jellyfish research states that the

random nature of the topology implies both graphs will be

near identical.

Next, Part B compares the performance of the normal

Jellyfish to a bipartite version. This comparison was to

observe if a bipartite configuration is more effective at load

balancing using ECMP routing.

A. R-Jellyfish vs. I-Jellyfish

Fig. 1(a) shows that with all-to-all traffic, R-Jellyfish (in

blue) and I-Jellyfish (in red) had approximately the same

throughput under all node and degree conditions. At most there

was a 5.16% variation of throughput between R-Jellyfish and I-

Jellyfish when N = 100 d = 12. Across the all-to-all simulations

the average variation was 3.38%.

Fig. 1(b) shows a comparison between the topologies using

random permutation traffic instead. The throughput using this

load is much higher than all-to-all when it is not normalized.

However, the results are the same and verify that R-Jellyfish

and I-Jellyfish again have approximately the same throughput.

The average data variation was 2.79%, with an outlier of 6.23%

when N = 200 and = 8.

In addition, another interested trend occurred. Fig. 1 shows

that in all instances, I-Jellyfish has an equal or slightly higher

throughput. It is unclear if this trend is significant or

coincidence due to the low sample size; running more

simulations could verify it. The original research did not show

the same trend of incrementally built graphs having a slightly

higher throughput. However, an overall evaluation of these

results corroborates statements made in the original report—the

throughputs are close to identical in all cases.

B. R-Jellyfish vs. B-Jellyfish

Since R-Jellyfish and I-Jellyfish were confirmed to have

approximately the same throughputs, B-Jellyfish will only be

compared to R-Jellyfish. The advantage of Jellyfish is that its

average path lengths are shorter than topologies like the fat tree

and folded Clos, however it becomes less effective in load

balancing using ECMP routing because there is not enough path

diversity. Fig. 2(a) shows the unnormalized throughput for all

parameters under all-to-all traffic. In these simulations R-

Jellyfish and B-Jellyfish performed similarly; R-Jellyfish had

an average of 8.28% higher throughput. In comparison, Fig.

2(b) shows the topologies with random permutation traffic, and

B-Jellyfish outperformed R-Jellyfish by an average of 15.37%

more throughput, with a maximum of 20.4%. Fig. 2(b) also

shows a trend of R-Jellyfish and B-Jellyfish converging when

N = 12 but remaining relatively constant when N = 8.

The load of random permutation traffic is much lighter than

all-to-all. This suggests that B-Jellyfish can significantly

outperform R-Jellyfish on light loads while still performing

nearly as well with heavier loads. This trend might be useful to

take advantage of in future network designs depending on the

data center needs.

V. CONCLUSION

In conclusion, Jellyfish is a highly flexible network

architecture for data centers. It is a new approach to solving the

modern-day challenges of incremental expansion, rising traffic,

and bandwidth bottlenecks, while maintaining short paths, high

fault tolerance, and high throughput. After evaluating randomly

generated Jellyfish, incrementally generated Jellyfish, and

bipartite Jellyfish, results show minor differences between

throughput in each, with the bipartite performing marginally

better than others under lighter loads. The novel network

performs well theoretically, however physical implementation

will be the ultimate challenge in the long run.

REFERENCES

[1] K. Solnushkin, “Fat-Tree Design,” ClusterDesign.org. [Online].
Available: https://clusterdesign.org/fat-trees/. [Accessed: 17-Mar-2020].

[2] A. Vahdat, M. Al-Fares, N. Farrington, R. N. Mysore, G. Porter, and S.
Radhakrishnan, “Scale-Out Networking in the Data Center,” IEEE Micro,
vol. 30, no. 4, pp. 29–41, 2010.

[3] “The Facebook Data Center FAQ,” Data Center Knowledge, 27-Sep-
2010. [Online]. Available: https://www.datacenterknowledge.com/data-
center-faqs/facebook-data-center-faq-page-2. [Accessed: 15-Mar-2020].

(a)

(b)

Fig. 3. I-Jellyfish has the same thorughput capacity as R-Jellyfish under all

node-degree paramaters and traffic conditions. The Jellyfish topology was
expanded in increments of one node, then compared to the throughput of

Jellyfish network built from scratch. The plot shows the average throughput

over 15 runs for all-to-all traffic in (a) and random permutation traffic in (b).

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 50 100 150 200 250 300

T
h

ro
u

g
h

p
u

t
(r

)

Number of Nodes (N)

R-Jellyfish vs. I-Jellyfish: All-to-All Traffic

R-Jellyfish, N=8
R-Jellyfish, N=12
I-Jellyfish, N=8
I-Jellyfish, N=12

0.2

0.225

0.25

0.275

0.3

0.325

0.35

0.375

0.4

0 50 100 150 200 250 300

T
h

ro
u

g
h

p
u

t
(r

)

Number of Nodes (N)

R-Jellyfish vs. I-Jellyfish: Random Permutation Traffic

R-Jellyfish, N=8
R-Jellyfish, N=12
I-Jellyfish, N=8
I-Jellyfish, N=12

(a)

(b)

Fig. 2. B-Jellyfish has nearly the same thorughput capacity as R-Jellyfish
under all node-degree paramaters and traffic conditions. The bipartite

topology was created by starting with a complete bipartite graph, then

incrementally adding pairs of nodes and randomly reconnecting links. The
plot shows the average throughput over 15 runs for all-to-all traffic in (a)

and random permutation traffic in (b). Under light loads B-Jellyfish performs

significantly better, then converges to the performance of R-Jellyfish as

traffic increases.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 50 100 150 200 250 300

T
h

ro
u

g
h

p
u

t
(r

)

Number of Nodes (N)

R-Jellyfish vs. B-Jellyfish: All-to-All Traffic

R-Jellyfish, N=8
R-Jellyfish, N=12
B-Jellyfish, N=8
B-Jellyfish, N=12

0.2

0.225

0.25

0.275

0.3

0.325

0.35

0.375

0.4

0.425

0.45

0.475

0 50 100 150 200 250 300

T
h

ro
u

g
h

p
u

t
(r

)

Number of Nodes (N)

R-Jellyfish vs. B-Jellyfish: Random Permutation Traffic

R-Jellyfish, N=8
R-Jellyfish, N=12
B-Jellyfish, N=8
B-Jellyfish, N=12

[4] R. Miller and C. Land, “Facebook Accelerates its Data Center
Expansion,” Data Center Frontier, 19-Mar-2018. [Online]. Available:
https://datacenterfrontier.com/facebooks-accelerates-data-center-
expansion/. [Accessed: 18-Mar-2020].

[5] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “Dcell,” Proceedings
of the ACM SIGCOMM 2008 conference on Data communication -
SIGCOMM 08, 2008.

[6] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish:
Networking Data Centers Randomly,” Presented as part of the 9th
{USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 12), pp. 225–238, 2012.

[7] “Bandwidth and Throughput in Networking: Guide and Tools,”
DNSstuff, 19-Sep-2019. [Online]. Available:
https://www.dnsstuff.com/network-throughput-bandwidth. [Accessed:
20-Mar-2020].

