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Abstract—Recent challenges facing modern data centers 

indicates a need for new network designs.  The architectures must 

be flexible, incrementally scalable, fault tolerant, and capable of 

supporting high bandwidth applications. Jellyfish is a new high-

capacity network that fulfills these design goals. Variations on the 

topology—random, incremental, and bipartite—were tested with 

different traffic loads using equal-cost multipath routing to 

observe the throughputs. Incremental expansion resulted in the 

same throughput as a Jellyfish network created from scratch. In 

addition, the bipartite Jellyfish outperformed the original Jellyfish 

in lower load situations, while underperforming in denser traffic.  

This paper describes the methodology of generating the Jellyfish 

variations, generating different traffic loads, simulating each 

network to find the average throughput, and finally reports and 

evaluates the results. 
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I. INTRODUCTION 

 A data center is a pool of computing resources that includes 
core design components such as routers, switches, firewalls, and 
servers. These centers are the foundation for important business 
activities like communication and collaboration, applications 
like big data, artificial intelligence, or machine learning, and 
infrastructure services like distributed files systems. Modern 
centers are also being built to provide popular online application 
services like web searching, gaming, and social media sites.   

 Conventional data centers are modeled as a multi-layer 
hierarchical network with servers as network nodes. For 
example, current data center topologies include fat-trees and 
folded-Clos. A fat-tree is a three-layer graph (edge, aggregation, 
and core) that has identical bandwidth at any bisection and each 
layer has the same aggregated bandwidth [1]. A folded-Clos 
network is a one-sided version of a fat-tree where it is essentially 
a bipartite graph. These current topologies are facing the 
challenges of rising traffic, bandwidth bottlenecks, and 
incremental network expansion, therefore it has become 
important to consider different network architectures [2]. For 
instance, in 2008 Facebook was running 10,000 servers in its 
data centers, by 2009 it was 30,000, and by 2010 it was 60,000 
[3]. In 2019, the company also announced it would build four 
additional data centers to house more servers and storage [4].   

 These challenges have led to several major design goals in 
data center networking [5]. First, an idealized network should be 
scalable and flexible, allowing for incremental network 
expansion by adding servers and network capacity gradually. 

Second, the data center must be fault tolerant against server and 
link failures. Third, the data center must provide network 
capacity to support high-bandwidth services. Lastly, the network 
should be manageable both digitally and physically [2]. For 
example, developers should be able to manage or configure the 
network easily and the architecture should minimize cabling 
complexity. 

 This paper focuses on a new top-of-rack (ToR) switch 
architecture by Ankit Singla et al. [6] called Jellyfish. It is a 
degree-bounded random graph topology that handles the rising 
challenges of data centers and fulfills the design goals stated 
above. The random nature of the network makes it significantly 
more flexible and fault tolerant.  On average, path lengths are 
shorter in Jellyfish compared to other topologies on all scales. 
Lastly, Jellyfish improves on the throughput of most 
conventional networks; it can support 27% more servers than a 
fat-tree topology [6]. Fig. 1 shows a diagram of a traditional fat-
tree topology versus a random Jellyfish network [6]. 

 The goal is to construct three variations of Jellyfish: 
Random Jellyfish (R-Jellyfish), Incremental Jellyfish (I-
Jelly), and Bipartite Jellyfish (B-Jellyfish), then measure the 
capabilities and throughput of each topology in different traffic 
situations. 

 The outline of this report is as follows:  Section 2 will further 
discuss the Jellyfish topology, it’s variations, and how to 
construct the graphs, Section 3 will describe the throughput 
performance, Section 4 will be a comparison of results, and 
Section 5 will conclude the paper. 

 
           Fat-Tree               Jellyfish 

  (tree-like topology)         (random graph) 

Fig. 1. Traditional fat-tree network versus a random graph Jellyfish 
network. Random graphs have high throughput due to low average path 

length, resulting in less work to deliver packets.  



II. JELLYFISH TOPOLOGIES 

This section further discusses the Jellyfish topology and 

ways to construct its variations. The Jellyfish network dictates 

the interconnection of ToR switches, which will be referred to 

as nodes, and the connections between switches as links. The 

degree of a node is the number of links connected to the node. 

The original Jellyfish approach results in a random regular 

graph which has several desirable properties for data center 

architecture. Typically, random graphs have high throughput 

due to the low average path length. This results in less work 

delivering each packet. The random nature also allows for 

incremental expansion with just a few link swaps. Expansion 

through this method also produces a network that is identical in 

throughput and path length to one generated from scratch [7]. 

These properties will be tested using the graph variations 

below. 

A. Random Jellyfish Topology (R-Jellyfish) 

 The original Jellyfish approach is to construct a random 
graph to connect ToR switches.  To generate the topology first 
designate the number of nodes N and maximum degree of each 
node d. Randomly select two nodes, u and v, from the pool of 
nodes. Check if they are connected; if not, connect them with a 
link (u,v) and increment the current degree d for u and v.  Repeat 
this process until it cannot be completed anymore. 

 Next, check the finished graph for nodes with degree d-2, 
which will be called node x. If x exists, select a random link (u, 
v). Remove the link between nodes u and v, then reassign links 
(u, x) and (v, x).  Now x will have degree d.  Repeat this process 
until it also cannot be completed anymore. 

 The final R-Jellyfish graph should contain N nodes with 
degree d, or possibly N-1 nodes with degree d and one node with 
degree d-1. 

B. Incremental Jellyfish Topology (I-Jellyfish) 

 The I-Jellyfish approach is used to test if incremental 
expansion will result in a graph with the same throughput as R-
Jellyfish.  To generate the graph, start with a pool of d+1 nodes 
and link all nodes to each other to create a complete graph G.  
Add node x to G.  Randomly select a link (u, v) and check that 
nodes u and v are not connected to x.  Remove the link (u, v) 
then reassign links (u, x) and (v, x).  Repeat this process until x 
has degree d.  Continue to add links this way until the G contains 
N nodes. 

 As was the case with R-Jellyfish, the final graph should 
contain N nodes with degree d, or possibly N-1 nodes with 
degree d and one node with degree d-1. 

C. Bipartite Jellyfish Topology (B-Jellyfish) 

The B-Jellyfish approach randomly constructs a bipartite 
graph with an even number of nodes on the left and right sides.  
This variation is used to test traffic load-balancing against the R-
Jellyfish. To construct the bipartite graph B, start with 2d nodes, 
with d nodes on the left side and d nodes on the right. Link all 
nodes on the left to all nodes on the right to create a complete 
bipartite graph. 

Add a new node l to the left side of B and add new node r to 
the right side. Connect l and r with a link (l, r). Choose d-1 
random links from B that do not share nodes with one another; 
the random links are (u1, v1), (u2, v2), …, (ud-1, vd-1).  For each 
link (uk, vk), delete the link between nodes uk and vk, then add 
links (l, vk) and (r, uk).  Repeat this process by adding pairs of 
nodes to B until there are N nodes. 

III. JELLYFISH TESTING AND PERFORMANCE 

 To make comparisons between R-Jellyfish, I-Jellyfish, and 
B-Jellyfish simulations were conducted to measure the 
throughput r of each topology. Throughput is a common 
measure of network capacity because it indicates how much data 
is transferred at any given time [7]. Three assumptions were 
made for the simulations.  First, the traffic matrix for each 
topology contains entries of 0 or r-value. Second, the traffic on 
each graph follows the shortest paths with equal-cost multi-path 
(ECMP) routing. ECMP is a mechanism to route packets along 
paths of equal cost to achieve an equal and distributed link load 
sharing []. The third assumption is that all links have capacity 1. 

 Throughput is defined as the maximum value r such that the 
traffic load on the links does not exceed the capacity, in this case 
1. Find the highest traffic load L among all links. The resulting 
throughput equation is (1): 

       r = 1/L            (1) 

 Suppose an R-Jellyfish graph has a maximum link load 4r.  
To ensure all the traffic loads on the graph are at most 1 due to 
the designated capacity, set 4r ≤ 1.  The resulting throughput 
becomes r = 0.25. 

A. Generating Traffic Matrices 

The throughput for each Jellyfish topology was tested under 
two different traffic loads: all-to-all and random permutation.  
In all-to-all, each node sends r amount of traffic to each of the 
other nodes. This results in heavier loads across all connections; 

for example, a of graph of 300 nodes results in (300
2
) = 44,580 

directions for end-to-end traffic. To construct the all-to-all 
traffic matrix, create an N × N matrix where N is the number of 
nodes in the network. Fill each matrix entry with flow equal to 
1. Both halves of the matrix must be filled in because all-to-all 
considers bidirectional traffic between nodes, e.g. node 1 sends 
traffic to node 300, but node 300 also sends traffic to node 1, 
effectively doubling the original load on all incident links. 

Random permutation is traffic generated by randomly 
selecting sending and receiving node pairs. The receiving node 
is only considered if it does not already have incoming traffic 
which results in much lighter loads compared to all-to-all.  A 
graph of 300 nodes results in 300 directions for end-to-end 
traffic—compared to the 44,580 generated by all-to-all—
because each node can only have incoming traffic once. To 
construct the random permutation matrix, create an N × N 
matrix. Next, randomly select a sending node and a receiving 
node, check if the receiving node already has incoming traffic, 
and if not, update the matrix entry with 1.  Repeat the process 
until all nodes in the graph receive traffic once from a source. 



B. Simulation Methodology 

An ECMP routing program was designed to calculate the 
throughput for the Jellyfish topologies. It reads in text files of 
a graph topology and traffic matrix, then outputs the traffic 
loads on each link. The program also reports the maximum 
load among links and uses (1) to calculate the throughput. 

The procedure for routing follows. The program reads the 
sending node u and receiving node v from the traffic matrix 
along with the traffic load—in all cases it is 1.  Starting at v, 
the preferred neighbor nodes are computed and saved. A 
preferred neighbor is a neighboring node that is along a 
shortest path from u to v. The traffic load is split evenly 
between all preferred neighbors and forwarded. The process 
repeats for all preferred neighbors until the program reaches 
the original sending node u. Finally, each link used in the 
forwarding will have its final flow saved to a traffic load 
matrix.  The process repeats for all inputs of sending and 
receiving nodes, while updating all link usage.  The simulation 
keeps track of which link has the highest flow, and reports the 
throughput using that value. 

The ECMP simulation was tested 15 times with each 
Jellyfish topology, traffic style, and node-degree combination.  
R-Jellyfish, I-Jellyfish, and B-Jellyfish files were generated 
where N = 64 d = 8, N = 100 d = 8, N = 200 d = 8, N = 100 d = 
12, N = 200 d = 12, and N = 300 d = 12. For example, to 
simulate an R-Jellyfish network containing 64 nodes of degree 
8 using random permutation traffic, 15 topology files and 15 
traffic matrices are generated.  The files are inputted into the 
ECMP simulation, which outputs 15 throughput values.  The 
data points are then averaged and presented in the results 
section. The testing was limited to 15 times per combination 
due to constraints and long execution time on larger node sets. 
The ECMP simulation takes upward of one minute to 
complete when N = 300 d = 12 with all-to-all traffic; this does 
not account for time necessary to generate the files. 

C. Throughput Results 

The throughput simulation results are shown in Table 1 and 
Table 2 below. The data is split between traffic load types: all-
to-all and random permutation. The results show that without 
normalization, the average throughput in all-to-all traffic is 
significantly lower than random permutation due to the much 
heavier link loads. For example, with parameters N = 300 and 
d = 12 in the R-Jellyfish network, the average maximum load 
was 90 using all-to-all, compared to 3 using random 
permutation. 

Overall, the distribution of the simulation data was much 
tighter than anticipated. High variance was expected due to the 
random nature of the topologies. However, all standard 
deviations calculated were >1 indicating the spread was low.  
The highest variance was σ2 = 0.07, which occurred with 
parameters N = 64 d = 8 in the I-Jellyfish network using random 
permutation traffic.  The maximum load on the network ranged 
from 2 to 4 with an average of 2.73. There were also multiple 
scenarios with σ2 = 0; this occurred at N = 300 d = 12 in all 
graph topologies with random permutation.  In every simulation 
the maximum load recorded was 3, resulting in an average 
throughput of 0.33 shown in Table 2. In addition, there were no 
significant outliers in any simulation. All throughputs 

calculated remained within one standard deviation of their 
respective means. 

TABLE I.  AVERAGE THROUGHPUT OF JELLYFISH TOPOLOGIES USING 

ALL-TO-ALL TRAFFIC LOAD 

Nodes 

(N) 

Average Throughput (r) 

R-Jellyfish I-Jellyfish B-Jellyfish 
d = 8 d = 12 d = 8 d = 12 d = 8 d = 12 

64 0.0420  0.0440  0.0416  

100 0.0206 0.0349 0.0216 0.0368 0.0187 0.0319 

200 0.0097 0.0167 0.0098 0.0165 0.0086 0.0145 

300  0.0100  0.0106  0.0096 

TABLE II.  AVERAGE THROUGHPUT OF JELLYFISH TOPOLOGIES USING 

RANDOM PERMUTATION TRAFFIC LOAD 

Nodes 

(N) 

Average Throughput (r), Random Permutation Traffic 

R-Jellyfish I-Jellyfish B-Jellyfish 
d = 8 d = 12 d = 8 d = 12 d = 8 d = 12 

64 0.3722  0.3833  0.4556  

100 0.3167 0.3278 0.3167 0.3389 0.3602 0.4524 

200 0.2333 0.3055 0.2488 0.3194 0.2855 0.3333 

300  0.3333  0.3330  0.3333 

IV. EVALUATION OF RESULTS 

This section evaluates the throughput results gathered in 

Section 3 and discusses the capabilities of each topology.  The 

goal of Part A is to evaluate the performance of Jellyfish 

created from scratch versus one that has been incrementally 

expanded.  The original Jellyfish research states that the 

random nature of the topology implies both graphs will be 

near identical.  

Next, Part B compares the performance of the normal 

Jellyfish to a bipartite version. This comparison was to 

observe if a bipartite configuration is more effective at load 

balancing using ECMP routing. 

A. R-Jellyfish vs. I-Jellyfish 

Fig. 1(a) shows that with all-to-all traffic, R-Jellyfish (in 

blue) and I-Jellyfish (in red) had approximately the same 

throughput under all node and degree conditions. At most there 

was a 5.16% variation of throughput between R-Jellyfish and I-

Jellyfish when N = 100 d = 12. Across the all-to-all simulations 

the average variation was 3.38%. 

Fig. 1(b) shows a comparison between the topologies using 

random permutation traffic instead. The throughput using this 

load is much higher than all-to-all when it is not normalized. 

However, the results are the same and verify that R-Jellyfish 

and I-Jellyfish again have approximately the same throughput.  

The average data variation was 2.79%, with an outlier of 6.23% 

when N = 200 and = 8. 

In addition, another interested trend occurred.  Fig. 1 shows 

that in all instances, I-Jellyfish has an equal or slightly higher 

throughput. It is unclear if this trend is significant or 

coincidence due to the low sample size; running more 

simulations could verify it. The original research did not show 

the same trend of incrementally built graphs having a slightly 

higher throughput. However, an overall evaluation of these 

results corroborates statements made in the original report—the 

throughputs are close to identical in all cases. 



B. R-Jellyfish vs. B-Jellyfish 

Since R-Jellyfish and I-Jellyfish were confirmed to have 

approximately the same throughputs, B-Jellyfish will only be 

compared to R-Jellyfish. The advantage of Jellyfish is that its 

average path lengths are shorter than topologies like the fat tree 

and folded Clos, however it becomes less effective in load 

balancing using ECMP routing because there is not enough path 

diversity. Fig. 2(a) shows the unnormalized throughput for all 

parameters under all-to-all traffic. In these simulations R-

Jellyfish and B-Jellyfish performed similarly; R-Jellyfish had 

an average of 8.28% higher throughput. In comparison, Fig. 

2(b) shows the topologies with random permutation traffic, and 

B-Jellyfish outperformed R-Jellyfish by an average of 15.37% 

more throughput, with a maximum of 20.4%. Fig. 2(b) also 

shows a trend of R-Jellyfish and B-Jellyfish converging when 

N = 12 but remaining relatively constant when N = 8.   

The load of random permutation traffic is much lighter than 

all-to-all. This suggests that B-Jellyfish can significantly 

outperform R-Jellyfish on light loads while still performing 

nearly as well with heavier loads. This trend might be useful to 

take advantage of in future network designs depending on the 

data center needs. 

V. CONCLUSION 

In conclusion, Jellyfish is a highly flexible network 

architecture for data centers. It is a new approach to solving the 

modern-day challenges of incremental expansion, rising traffic, 

and bandwidth bottlenecks, while maintaining short paths, high 

fault tolerance, and high throughput. After evaluating randomly 

generated Jellyfish, incrementally generated Jellyfish, and 

bipartite Jellyfish, results show minor differences between 

throughput in each, with the bipartite performing marginally 

better than others under lighter loads. The novel network 

performs well theoretically, however physical implementation 

will be the ultimate challenge in the long run.  
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Fig. 3. I-Jellyfish has the same thorughput capacity as R-Jellyfish under all 

node-degree paramaters and traffic conditions. The Jellyfish topology was 
expanded in increments of one node, then compared to the throughput of 

Jellyfish network built from scratch.  The plot shows the average throughput 

over 15 runs for all-to-all traffic in (a) and random permutation traffic in (b). 
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Fig. 2. B-Jellyfish has nearly the same thorughput capacity as R-Jellyfish 
under all node-degree paramaters and traffic conditions. The bipartite 

topology was created by starting with a complete bipartite graph, then 

incrementally adding pairs of nodes and randomly reconnecting links. The 
plot shows the average throughput over 15 runs for all-to-all traffic in (a) 

and random permutation traffic in (b). Under light loads B-Jellyfish performs 

significantly better, then converges to the performance of R-Jellyfish as 

traffic increases. 
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